If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-9=0
a = 5; b = 14; c = -9;
Δ = b2-4ac
Δ = 142-4·5·(-9)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{94}}{2*5}=\frac{-14-2\sqrt{94}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{94}}{2*5}=\frac{-14+2\sqrt{94}}{10} $
| (9x-44)=(7x-10) | | 6d+1=10 | | 42=3x+(-6) | | 5.11=(1.06)^n | | n+-14=28 | | n+-10=-13 | | 3x+1=8+x | | (-2x+1)(x+4)(3x^2-12)=0 | | 7(x-5)-1=-4(-7x+7)-5x | | n-(-18)=-16 | | 15(b+13)=990 | | n+-4=19 | | 6(x-3)-8x=14 | | 6n=-7.2 | | (-6x)+9=25 | | 4w+20=-2(w-7) | | 0.92x=460 | | n+6.2=-15.1 | | 5x+15x=1 | | 24=(1.09)(x) | | 24=1.09*x | | 3×(2x-5)=-9 | | 1.833333333333333=n+0.7777777777777778 | | x^2+0.5^2=1.3^2 | | 70x+130=40+80x | | (3x)/(10)+(7x)/(15)=17 | | 222.72=6(0.08m+28.80) | | n-9.2=10.5 | | 5^x+2=7^x-4 | | 222.72=6(m+28.80) | | 2.3x-1.6=8.8 | | 24+n=-9 |